49 research outputs found

    Natural coagulates for wastewater treatment; a review for application and mechanism

    Get PDF
    The increase of water demand and wastewater generation is among the global concerns in the world. The less effective management of water sources leads to serious consequences, the direct disposal of untreated wastewater is associated with the environmental pollution, elimination of aquatic life and the spread of deadly epidemics. The flocculation process is one of the most important stages in water and wastewater treatment plants, wherein this phase the plankton, colloidal particles, and pollutants are precipitated and removed. Two major types of coagulants are used in the flocculation process included the chemical and natural coagulants. Many studies have been performed to optimize the flocculation process while most of these studies have confirmed the hazardous effects of chemical coagulants utilization on the ecosystem. This chapter reviews a summary of the coagulation/flocculation processes using natural coagulants as well as reviews one of the most effective natural methods of water and wastewater treatment

    Management of rheumatoid arthritis: consensus recommendations from the Hong Kong Society of Rheumatology

    Get PDF
    Given the recent availability of novel biologic agents for the treatment of rheumatoid arthritis (RA), the Hong Kong Society of Rheumatology has developed consensus recommendations on the management of RA, which aim at providing guidance to local physicians on appropriate, literature-based management of this condition, specifically on the indications and monitoring of the biologic disease-modifying anti-rheumatic drugs (DMARDs). The recommendations were developed using the European League Against Rheumatism (EULAR) recommendations for the management of early arthritis as a guide, along with local expert opinion. As significant joint damage occurs early in the course of RA, initiating therapy early is key to minimizing further damage and disability. Patients with serious disease or poor prognosis should receive early, aggressive therapy. Because of its good efficacy and safety profile, methotrexate is considered the standard first-line DMARD for most treatment-naïve RA patients. Patients with a suboptimal response to methotrexate monotherapy should receive step-up (combination) therapy with either the synthetic or biologic DMARDs. In recent years, combinations of methotrexate with tocilizumab, abatacept, or rituximab have emerged as effective therapies in patients who are unresponsive to traditional DMARDs or the anti-tumor necrosis factor (TNF)-α agents. As biologic agents can increase the risk of infections such as tuberculosis and reactivation of viral hepatitis, screening for the presence of latent tuberculosis and chronic viral hepatitis carrier state is recommended before initiating therapy

    Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling

    Get PDF
    Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets.National Science Foundation (U.S.) (DB1-0821391)National Institutes of Health (U.S.) (Grant U54-CA112967)National Institutes of Health (U.S.) (Grant R01-GM089903)National Institutes of Health (U.S.) (P30-ES002109

    The Role of Microenvironment Stromal Cells in Regenerative Medicine

    No full text
    Regenerative medicine offers the potential for treatment and possibly cures debilitating diseases including heart disease, diabetes, Parkinson’s disease, and liver failure. Approaches using stem cells from various sources are in preclinical and clinical testing. The goal of these studies is to deliver cellular products capable of replacing damaged tissue and/or cells. However, the balance between cellular proliferation and differentiation is a carefully controlled process involving a range of growth factors and cytokines produced in large part by tissue stromal cells. These stromal cells make up the tissue microenvironment and appear to be essential for normal homeostasis. We hypothesize that tissue damage in many instances involves damage to the microenvironment resulting in a lack of signals through growth factor networks necessary to maintain survival and proliferation of tissue-specific stem cells and progenitor cells. Therefore, optimal repair of disease tissue must account for the damage to the stromal environment and will require reconstitution of the microenvironment to support the survival, proliferation, and differentiation of the tissue-specific stem cells or progenitor cells. Further, stromal cells from different tissues have distinct gene profiles and so a homologous source of stromal cells would minimize potential differences that could result in unwanted toxicities or biological effects
    corecore